

Course Syllabus

1	Course title	Physics of Materials
2	Course number	0332371
3	Credit hours	3
5	Contact hours (theory, practical)	3,0
4	Prerequisites/corequisites	0302261
5	Program title	B.Sc.
6	Program code	
7	Awarding institution	University of Jordan
8	School	Science
9	Department	Physics
10	Course level	Bachelor
11	Year of study and semester(s)	2023-2024, First Semester
12	Other department(s) involved in teaching the course	
13	Main teaching language	English
14	Delivery method	\Box Face to face learning \boxtimes Blended \Box Fully online
15	Online platforms(s)	□Moodle ⊠Microsoft Teams □Skype ⊠Zoom □Others
16	Issuing/Revision Date	Oct 8, 2023

ame: Ahmad S Masadeh	Contact hours: Sunday Monday 11 -12
Office number: 12	Phone number: 22065
Email: ahmad.masadeh@ju.edu.jo	

18 Other instructors:

Name:	
Office number:	
hone number:	
Email:	

19 Course Description:

Atomic structure and interatomic bonding; crystalline solids; imperfections in solids; diffusion; mechanical properties of metals; dislocations and strengthening mechanisms; phase diagrams; phase transformations in metals; structure and properties of ceramics; polymer structures; composites

3

A- Aims:

The aim of a physics of materials course at the undergraduate level is to introduce students to the fundamental principles governing the behavior, properties, and applications of materials from a physics perspective. This course typically covers the structure of materials at atomic and molecular levels, the relationship between structure and properties, and how materials respond to various external conditions like temperature, pressure, and electromagnetic fields.

Key objectives of such a course may include:

- 1. Understanding Structure-Property Relationships: Teaching students how the atomic and molecular structure of materials influences their mechanical, electrical, magnetic, and thermal properties.
- 2. **Material Characterization Techniques:** Introducing students to various experimental techniques used to study materials, such as X-ray diffraction, electron microscopy, spectroscopy, and other analytical methods.
- 3. **Mechanical Behavior of Materials:** Explaining the mechanical properties of materials including elasticity, strength, toughness, and how these properties relate to the material's structure.
- 4. **Electronic Properties:** Covering topics like conductivity, semiconductors, and how the arrangement of atoms affects electrical properties.
- 5. **Applications and Material Selection:** Discussing real-world applications of different materials in various industries and helping students understand the selection criteria for specific materials in different contexts.
- 6. **Nanomaterials and Advanced Materials:** Providing an introduction to emerging materials, such as nanomaterials, polymers, composites, and their unique properties. Overall, the course aims to equip students with a foundational understanding of the physical principles underlying materials, enabling them to comprehend and contribute to advancements in material science and engineering.
- B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

- 1. An ability to identify, formulate, and solve broadly defined technical or scientific problems by applying knowledge of mathematics and science and/or technical topics to areas relevant to the discipline.
- 2. An ability to formulate or design a system, process, procedure or program to meet desired needs.
- 3. An ability to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions.
- 4. An ability to communicate effectively with a range of audiences.
- 5. An ability to understand ethical and professional responsibilities and the impact of technical and/or scientific solutions in global, economic, environmental, and societal contexts.

4

6. An ability to function effectively in teams that establish goals, plan tasks, meet deadlines, and analyze risk and uncertainty.

Upon successful completion of this course, students will be able to:

Prog	gram SLOs	SLO								
Course SLOs		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
 Grasping the fundan atomic arrangements crystal structures and comprehend materia the atomic level. 	nentals of s, including d defects, to l properties at	~	~							
 Grasp of fundamenta properties like mech electrical, thermal, a properties, and the fa influencing these pro- 	al material anical, nd optical actors operties.	~	~							
 Developing knowled materials deform, fra behave under stress, concepts like elastic and toughness. 	lge about how acture, and covering ity, plasticity,	~	~							
 Understanding heat mechanisms in mate response to changes including thermal co expansion. 	transfer rials and their in temperature, nductivity and	~	~							
5. Familiarization w experimental mer analyze and char materials, such as spectroscopy, mi and diffraction.	with various thods used to acterize s croscopy,			~						
6. Development of solving skills throug application of princi analyze and solve m issues or scenarios.	problem- h the ples learned to aterial-related	~	~							

21. Topic Outline and Schedule:

Week	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
1	Atomic Structure and Interatomic bonding Mixed Bonding And Bonding Type-Material	ILO(2)	Blended	Teams	Synchronous and Asynchronous Lecturing		
2	Fundamental Concepts 3.3: Unit Cell 3.4: Crystal Systems Point Coordinates	ILO(2)	Blended	Teams	Synchronous and Asynchronous Lecturing		
3	Crystallographi c Directions Crystallographi c Planes	ILO(2)	Blended	Teams	Synchronous and Asynchronous Lecturing		

4	Single Crystal Polycrystalline Materials Noncrystalline Solids	ILO(1,3)	Blended	Teams	Synchronous and Asynchronous Lecturing	
5	 4.2: The Face- Centered Cubic (FCC) 4.3: The Body- Centered Cubic (BCC) 4.4: The Hexagonal Closed-Packed (HCP) 4.5: Density Computing- Metals 	ILO(1,3)	Blended	Teams	Synchronous and Asynchronous Lecturing	
6	4.6: Ionic Arrangement Geometries 4.7: AX-Type Crystal Structures 4.10: Density Computing- Ceramic 4.12: Carbon (diamond vs. graphite)	ILO(1,3)	Blended	Teams	Synchronous and Asynchronous Lecturing	
7	 4.13: Polymer Crystallinity 4.15: Atomic Arrangements 4.16: Linear and Planar Densities 4.17: Closed- Packed Crystal Structures 	ILO(3)	Blended	Teams	Synchronous and Asynchronous Lecturing	

8	4.18: The Diffraction Phenomena 4.19: X-Ray Diffraction and Bragg's Law	ILO(3)	Blended	Teams	Synchronous and Asynchronous Lecturing	
9	6.2: Point Defects in Metals6.4: Impurities in Solids6.6: Specification of Composition	ILO(3)	Blended	Teams	Synchronous and Asynchronous Lecturing	
10	 7.1: Introduction 7.2: Diffusion Mechanisms 7.3: Steady- State Diffusion (Fick's first Law) 7.4: Non Steady-State Diffusion 7.5: Factors That Influence Diffusion 	ILO(3,4)	Blended	Teams	Synchronous and Asynchronous Lecturing	
11	 8.1 Introduction 8.2 Concepts of Stress and Strain 8.3 Stress– Strain Behavior 8.4 Anelasticity 8.5 Elastic Properties of Materials 	ILO(1,3,4)	Blended	Teams	Synchronous and Asynchronous Lecturing	

12	 8.6 Tensile Properties 180 8.7 True Stress and Strain 187 8.8 Elastic Recovery After Plastic 8.9 Compressive, Shear, and Torsional 8.10 Hardness 	ILO(5)	Blended	Teams	Synchronous and Asynchronous Lecturing	
13	19.1 Introduction 19.2 Heat Capacity 19.3 Thermal Expansion	ILO(5)	Blended	Teams	Synchronous and Asynchronous Lecturing	
14	19.4 Thermal Conductivity 19.5 Thermal Stresses Problems	ILO(5)	Blended	Teams	Synchronous and Asynchronous Lecturing	
15	Review	ILO(1-5)	Blended	Teams	Synchronous and Asynchronous Lecturing	

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

9

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
		Atomic Structure and Interatomic bonding.	ILO 1,2		
First Midterm		Fundamental of Crystallography			
	30%			6 th	
2nd midterm		The Structure of Crystalline Solid.	ILO 3,4		
	30%	Solids		11 th	
Final exam	40%	All subjects	ILO 1-5	15 th	

23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

The students are expected to have internet connection and a calculator

24 Course Policies:

A-Attendance policies:

Students are expected to attend all class sessions. If a student cannot attend a class session, the teacher must be notified prior to that. For the university's rules and regulations, the student's

total absences must not exceed 15 % of the total class hours. Please refer to the University of Jordan student Handbook for further explanation.

B-Absences from exams and handing in assignments on time:

- a. Failure in attending a course exam other than the final exam will result in zero mark unless the student provides an official acceptable excuse to the instructor who approves a make up exam.
- b. Failure in attending the final exam will result in zero mark unless the student presents an official acceptable excuse to the Dean of his/her faculty who approves an incomplete exam, normally scheduled to be conducted during the first two weeks of the successive semester.

C-Health and safety procedures:

We don't have any policy at the moment considering the safety procedures, nevertheless, the instructor in each session has to give a general safety instructions for the student.

D-Honesty policy regarding cheating, plagiarism, misbehavior:

Cheating, plagiarism, misbehavior are attempts to gain marks dishonestly and includes; but not limited to:

- Copying from another student's work.
- Using materials not authorized by the institute.
- Collaborating with another student during a test, without permission.
- Knowingly using, buying, selling, or stealing the contents of a test.
- Plagiarism which means presenting another person's work or ideas as one's own, without attribution.
- Using any media (including mobiles) during the exam.

E- Grading policy:

Grades will be awarded based on the statistical distribution of marks out of 100%

F-Available university services that support achievement in the course:

- Faculty members website
 - E-Learning website

25 References:

مـركـز الاعتماد وضمان الجودة

A- Required book(s), assigned reading and audio-visuals:

1. W. Callister and David G. Rethwisch "Materials Science and Engineering - SI Version" 9 th edition.

Recommended books, materials, and media:

- 2. Introduction to Materials Science for Engineers" by James F. Shackelford.
- 3. Materials Science and Engineering: Properties" by Charles Gilmore

26 Additional information:

Name of Course Coordinator: -Ahmad Msadeh	Signature: Date: 10-10-2023
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
Head of Curriculum Committee/Faculty:	Signature:
Dean:	Signature: